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Abstract

__I We describe the current state of the Pixel-planes research project, whose
goal is to develop powerful raster graphics systems for the next generation
of workstations. The first full-scale prototype has been in regular use in our

N department's computer graphics laboratory since its first demonstration at
( SIGGRAPH '86, more than a year ago. We describe the final hardware

configuration of the prototype system, filling in some of the engineering
details heretofore unpublished. Next we outline the programming
environment for the machine and summarize the major algorithms that have
been developed. Finally we discuss our progress towards a new generation
of the Pixel-planes architecture, Pixel-planes 5.

1. Motivation and Overview

The goal of the Pixel-planes research project has been to build an affordable
and generally useful system for interactive 3-D display. As personal
dedicated computers have matured over the years, an increasing percentage
of machine resources has been devoted to the user interface. The idea of
giving each user a dedicated processor and high resolution display, although
once controversial, has now been widely adopted and forms the basis for D T ] (.
modern desk-top workstations [Kay, 1977; Thacker et al., 1979]. The next /i

plateau in workstation performance will be reached, we believe, when f1% ELE C T E
desk-top systems allow the user to manipulate and modify realistic, 3-DN
colored images of objects in real time. The availability of such systems at a O 1 8 1988
reasonable price should have a great impact in such diverse areas as
mechanical design, medical diagnosis and therapy, molecular modelling, ,
architectural design, and vehicle simulation for pilot and driver training. H
Workstations with real-time 3-D displays will likely be characterized by
hardware largely devoted to the user interface, because the computational
task of rendering realistic images of objects is extremely demanding, far
beyond the capabilities of the most powerful existing general-purpose
computers.

* Now with Sun Microsystems, Inc., 500-C Uwharrie Ct., Raleigh, NC 27806
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Pixel-planes is a raster graphics system for rapidly rendering 3-D objects
and scenes. It features a 'smart' frame buffer composed of custom,
logic-enhanced memory chips that can be programmed to perform most
pixel-oriented tasks in parallel at each pixel. The novel feature of the
approach is a unifying mathematical formulation that expresses the parallel
execution of these tasks. This formulation is supported on an efficient
tree-structured computation unit that calculates inside each chip the proper
values for every pixel in parallel.

The 'front-end' of the system specifies the objects on the screen in a
pixel-independent form and broadcasts this description to the custom
memory chips that form the frame buffer. These chips generate an image
directly from this description. Image primitives such as lines, polygons,
and spheres are each described by expressions (and operations) that are
linear in screen space, that is by coefficients A,B,C such that the value
needed at a pixel is Ax+By+C, where x,y is the pixel's location on the
screen. These ABC's and operation codes are passed to the frame buffer
and processed simultaneously at every pixel.

Pixel-planes is a radical approach to raster graphics [Fuchs and Poulton,
1981; Fuchs et al., 1982; Poulton et al., 1985; Fuchs et al., 1985]. The
information passed to the frame buffer is not address/data pairs (x,y
addresses, RGB data) as in conventional systems,* but linear expressions
processed simultaneously at every pixel. While other raster graphics
systems perform the most time-consuming calculations either on
general-purpose processors or on special hardware that executes only a
particular set of graphics functions, Pixel-planes is a general-purpose
engine, especially powerful when the pixel operations can be described in
terms of linear expressions.

2. Hardware Configuration

The Pixel-planes 4 system (Photograph 1, Figure 1) consists of a Digital
Equipment Corporation MicroVax II workstation, which acts as host, and a
separate cabinet which contains the prototype custom hardware; the
prototype contains two racks: a Multibus and a fully custom backplane. The
host is connected to the prototype by a DMA link. The DMA link is
supported at the host end by a DR11W card and in the Pixel-planes
prototype by a custom 'host interface' in the Multibus. The host controls
the system by performing reads and writes on the Multibus using this link.

The prototype is composed of two parts: a Graphics Processor and a Frame
Buffer. The Graphics Processor is a floating-point uni-processor; it
traverses a hierarchical display list, computes viewing transformations,
performs lighting calculations, clips primitives that are not visible, performs
perspective division, and translates the resulting screen-space descriptions
into the form of data (A,B,C) for linear expressions, together with
instructions. The Frame Buffer is made from custom VLSI
processor-enhanced memories and is 512 x 512 pixels by 72 bits per pixel
in size; it accepts the word-parallel A,B,C coefficient sets and instruction
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op-codes to create raster images and refreshes a standard RGB monitor.
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code bus, and write-only from the Multibus; this allows easy loading of
code from the host, using the DMA link to the host interface.

The GP has 8 MegaBytes of CMOS dynamic-RAM data store, contained on
I MegaBit parts. A custom memory controller controls memory refresh,
supports fast page mode addressing, and provides dual access ports. For
normal operation the data store is accessed by the GP's 32-bit data bus; the
second port maps the data store onto the Multibus, allowing reads and
writes from the host using the DMA link to the host interface.

The GP's interface to the Frame Buffer consists of 1024 36-bit words of
first-in/first-out (FIFO) memory, which provides time load balancing. The
interface is mapped onto 16 memory locations on the GP's data bus. When
the GP writes to the interface, the 32 bits from the GP data bus and the 4
LSB's of address form a 36-bit FIFO word. The 4 extra bits form a register
address for the Frame Buffer, and tag the 32-bit quantity as an A, B, or C
coefficient, instruction op-code, or initialization and control information.

The GP is contained on three 12" x 12" dual-height Multibus wire-wrap
cards, which reside in the prototype's Multibus. The XL chip set and code
store are contained on one half-full card. The data store fills another card.
The third card contains about 20 parts comprising the Frame Buffer FIFO
interface.

The GP attains peak performance of 16 MegaFlops, based on 1
multiply-accumulate per cycle at an 8 MHz clock rate. This is sufficient to
match the speed of the Frame Buffer on most algorithms. On some
algorithms the GP is able to keep up with the Frame Buffer with only C
coding. On other algorithms, such as the polygon rendering algorithm,
inner loops (i.e.: the procedure to render one polygon) must be microcoded
in order to keep up. Programming the GP will be discussed in the next
section.

2.2 Frame Buffer

The Frame Buffer consists of 3 parts: the array of custom VLSI
processor-enhanced memory chips, the Image Generation Controller, and
the Video Controller.

The custom chips that compose the frame buffer have three main parts: a
conventional memory array that stores all pixel data for a 128-pixel column
(72 bits per pixel), an array of 128 tiny one-bit ALU's that carry out
pixel-local arithmetic and logical operations, and a multiplier tree that
generates bilinear expressions Ax+By+C simultaneously for all pixels. In
generatinr, these bilinear expressions, the multiplier provides the power of
two 10-bit bit-serial M/A's at every pixel, but at much less expense in
silicon area. The chips are implemented in 3-micron nMOS technology and
contain approximately 63,000 transistors each. Of the chip's active area,
70% is dedicated to memory and 30% to processing circuitry.
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An array of 2048 of these processor-enhanced memory chips forms the core
of a massively parallel (512 x 512), bit-serial, single instruction, multiple
data (SIMD) machine. On each micro-cycle, each pixel processor receives
one bit of the tree result Ax+By+C, generated in the multiplier tree from
global ABC bit-streams; the pixel ALU's execute a micro-instruction, and
one bit in pixel memory is accessed. During any given micro-cycle, pixel
ALU's for every pixel in the system execute the same micro-instruction
simultaneously, and the same location in pixel memory is addressed at every
pixel; however, although ABC are the same for every pixel, the tree result
Ax+By+C will in general be different.

The enhanced memory chips are contained on thirty-two 15" x 15" printed
circuit boards which reside in a custom backplane. The backplane provides
(1) approximately 600 amps at 5 volts and 100 amps at 7 volts to power the
memories, (2) a simple broadcast bus for distributing control signals to the
memories, and (3) a daisy-chained path which links the boards together in a
'video train', which operates at pixel rates to collect video output data from
the chips and channel it to the Video Controller. Each board contains 64
enhanced memory chips, 5 driver chips for distributing the control signals,
and one stage of the 32-bit wide shift register which forms the video train.

The Image Generation Controller (IGC) and Video Controller (VC) together
provide all control signals for the enhanced memory chips. The IGC
provides the SIMD instruction for the pixel ALU's, the address into local
pixel memory, and the bit streams for the AB,C linear coefficients. The VC
provides the control signals for the video output port of the enhanced
memories and the video train, and contains color lookup tables and DAC's
to generate analog RGB video. The IGC and VC function almost
independently, with two exceptions. Firstly, the enhanced memories' video
output ports require that the IGC address the 32 bits of pixel memory to be
funneled into the video train at least once per video scan line (and, since the
pixel memory is dynamic, it must address the remainder of the 72 pixel
memory bits at least once every few milliseconds). Secondly, when doing a
double-buffered display, the IGC must synchronize with a vertical retrace
control signal from the VC, so that updating of the display buffer will occur
during vertical retrace to avoid screen "tear".

The Image Generation Controller is based on a simple microcode
sequencer, which generates the SIMD instructions for the array of enhanced
memory, and a set of shift registers to bit serialize the A,B,C coefficients.
The microcode sequencer has 256 words of code store, 32 bits in width.
Sequence control is very simple: there is no stack; there are unconditional
branches, and 5 types of conditional branches. For maximum efficiency and
programmability the sequencer does not use pipelined instruction pre-fetch;
each instruction is fetched during the first half of a clock cycle, and the
instruction is executed and the next address generated during the latter half
of the clock cycle.

Microcode is generated using a simple microcode assembler written in C
which runs on the host. Microcode is loaded into the TGC's static-RAM
microcode store via the FIFO interface from the GP. This allows easy
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rewrites and test of new IGC microcode.

The SIMD instruction for the pixel ALU's is generated directly from the
microcode data register. The address into pixel memory is generated by a set
of 3 counters: two are initialized from "destination address" and "source
address" fields of the instruction op-code from the GP; the third generates
addresses for memory refresh and to support the video scan-out
mechanism, during cycles for which neither the destination address or
source address is operative. The bit-streams for the A,B,C coefficients are
generated by a set of shift registers which are controlled by microcode bits;
the shifters also provide tokens representing the position of the LSB and
sign-bit of the tree result Ax+By+C, which are used to qualify conditional
branches, thereby synchronizing the ALU and pixel memory
micro-instfuctions with the multiplier tree. This synchronization is
necessary, since, for maximum efficiency, instructions can be overlapped;
that is, while one instruction executes in the pixel ALU and pixel memory,
the multiplier tree can generate the tree result for the next instruction.

The IGC is built using about 80 FAST-TTL parts, 8 high-speed MOS
static-RAM's (for the microcode store), and one 8,000 transistor nMOS
custom VLSI chip (for bit-serializing the coefficients). It is contained on one
12" x 12" Multibus wire-wrap card.

Video Controller. The VC also is based on a microcode sequencer. Bits
of the microcode word define blanking and sync signals to support a variety
of displays. Other fields control the video output port of the enhanced
memory chips and the video train. The VC contains color lookup tables and
D/A converters to produce analog RGB output. Like the IGC, the VC has a
microcode assembler and a RAM microcode store accessible from the
Multibus. The color lookup tables also are loaded from the Multibus. The
VC is larger, more complicated, and more versatile than is necessary. It was
implemented in this way in order to ease system development; for example,
it was microcoded to fill the entire screen in an early prototype with only 64
x 64 pixels of enhanced memory. It also can be programmed to utilize the
72 bits of pixel-memory in different ways and in conjunction with various
color lookup tables.

The VC is implemented using about 100 "ITL and MOS memory parts. It is

contained on one 12" x 12" Multibus wire-wrap card.

2.3 Input Devices

The Multibus rack contains a wire-wrap card containing a 16-channel analog
to digital converter. A user input box contains two 3-degree of freedom,
deflection-encoded joysticks and a slider potentiometer. These are connected
to 7 of the A/D channels. The remaining channels are available for additional
input devices. The A/D converter is accessed from the host MicroVax via
the host interface and DMA link.
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3. Software Environment

To program Pixel-planes, a programmer works with the three major
components of the system: the host MicroVax workstation, the Graphics
Processor, and the Frame Buffer. Typically, the host program downloads
the executable for the GP and starts its execution, reads the user input
devices and keyboard, and sends and receives messages and data to and
from the GP program. The program on the GP does the more computation
intensive algorithms to generate A,B,C coefficient sets and sends these
coefficients along with instructions to the Frame Buffer.

The lowest-level programmer, who wishes to implement new algorithms for
the Pixel-planes architecture, must be concerned with all three components
of the system, including the details of rendering on the Frame Buffer. The
following sections will be at this level, since it is most helpful for
understanding the functioning of the system; however, some higher-level
approaches are discussed in Section 3.8.

3.1 Frame Buffer programming model

The Frame Buffer is an array of 512 x 512 processors operating in SIMD
fashion. These processors map directly onto the 512 x 512 display. Each
pixel processor receives one output of the multiplier tree, Ax+By+C, where
x,y is the address of the pixel processor on the display screen, and A,B,
and C are the instruction coefficients; this tree result is produced in bit-serial
form. Each pixel processor has 72 bits of local pixel memory and an ALU.
This pixel-ALU operates bit-serially on data in the pixel memory, as well as
on the tree result. The ALU also contains an Enable register, which qualifies
all writes into pixel memory. On each microcycle, the multiplier tree
receives a bit of the A,B,C coefficients, and each pixel processor receives a
bit of the tree result Ax+By+C, an address in the 72 bit pixel memory, and
an ALU micro-instruction. The pixel memory address, ALU
microinstruction, and A,B,C coefficients are the same for all of the 512 x
512 processors. However, a different tree result is available at each
processor since the tree result is dependent on the processor's xy address;
furthermore, execution of instructions at the pixel processors may be
conditioned by the values of the individual Enable registers.

The bit-serialized A,B,C coefficients, ALU micro-instructions, and pixel
memory addresses are generated by the IGC. The programmer deals only
with the IGC and not directly with the pixel processors. The IGC effectively
hides the bit-serial nature of the machine from the programmer. It receives
32- or 64-bit instruction op codes plus A,B,C coefficient sets as IEEE
standard 32-bit format single-precision floating point numbers, and
generates the cycle by cycle coefficient bits, ALU micro-instructions, and
pixel memory addresses required to execute the specified instruction.

The instruction set for the IGC (that is, for the Frame Buffer) looks very
similar to the instruction set of a very simple microprocessor; it supports
addition, subtraction, comparison, and logical combinations of two
quantities. However, the operand quantities, rather than being restricted to
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8-, 16-, or 32-bit words, can be segments of pixel memory of arbitrary
length; additionally, the tree result Ax+By+C can be an operand, so that an
instruction can, for example, add the tree result to the contents of a segment
of pixel memory.

Since the Frame Buffer is SIMD, branching is not be supported. Rather, a
set of instructions is provided for modifying the contents of the ALU Enable
register. For example, the Enable register can be loaded with, or logically
combined with, a bit of pixel memory, the sign-bit of a tree result, or the
result of a comparison of two pixel memory segments or the tree result and
a pixel memory segment. Once a pattern of Enable register settings is
created using these commands, all subsequent commands which perform
write operations into pixel memory are effectively ignored by pixel
processors with a 0 in their Enable register, since writes into pixel memory
are disabled.

3.2 Interface from GP to Frame Buffer

The IGC is mapped onto several memory mapped locations in the GP's data
space. (As described in Section 2.2, this interface is buffered with a FIFO).
These memory locations can be thought of as an instruction op-code register
and A, B, and C coefficient registers. Some instructions, which operate
only on the data in local pixel memory and/or the Enable register, are
invoked simply by writing to the instruction op-code register. For
instructions which use the tree result, the programmer must first write the
A,B,C coefficient values to those registers, and then write the op-code to
the instruction register.

3.3 Programming the GP

A GP program accesses the Ftame Buffer (IGC) registers using a set of
macros with arguments, as supported by the C language pre-processor.
These macros are of the form:

FB.A (coefficient value);
FBB (coefficient value);
FB_C (coefficient value);
FBINSTRUCTON-NAME (instruction arguments);

The 3 coefficient macros simply push the floating-point coefficient value to
the correct memory address on the interface. The INSTRUCTION-NAME
macro assembles the instruction arguments into a 32- or 64-bit IGC op-code
and push-es this to the memory interface.

Code for the GP is written in the high-level language C. The C code is
compiled on the host MicroVax using a cross-compiler supplied and
supported by Weitek, and is downloaded to the GP via the DMA link. For
applications in which the GP has difficulty keeping up with the Frame
Buffer, portions of the GP code can be hand microcoded using an
assembler, also supported on the MicroVax.
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GP programs are linked with a library containing routines which handle
details of loading microcode into the IGC and VC. Microcoding of the IGC
and VC is beyond the scope of this discussion. A fairly complete set of IGC
instructions and VC scan-out regimens has been created by the designers of
those sub-systems. When required for a new application, additional
microcode for the appropriate controller can be fairly easily generated; for
example, writing and debugging IGC microcode for a new FB_ instruction
generally requires about one hour.

3.4 Programming the host

Code for the host is written in C under Ultrix, DEC's version of UNIX. A
library is provided for allowing the host program to read the user input
devices via the AID board. Another library handles communications with the
GP via the DMA link; the routines allow the host program to download
executables to the GP's code store, start and stop execution of GP
programs, and transfer data to and from the GP's dual-access data memory.

Special assemblers on the host are used to generate microcode for the IGC,
microcode for the VC, and configuration information for the enhanced
memory chips (defining the xy position of -each chip's 128-pixel column on
the display). Microcode for the IGC is downloaded to the GP and
transferred to the IGC via its interface on the GP bus. Microcode for the VC
is written to the VC's microcode store over the Multibus using the DMA
link to the host interface. Enhanced memory chip configuration data is
written to the VC via the Multibus and sent to the enhanced memory array
using the scan-out control mechanism.

3.5 Communications between host and GP

Communications between the host and the GP can be done in two ways:
using shared memory, and using interrupts.

Executables for the GP are generated using Weitek's assembler and linker,
and the resulting executable is translated into an object module which is
linked into the host executable. In doing this, the host program is permitted
to access any variable declared as external in the GP program by prefixing
the variable name with gp_; hardware support for this is provided by the
GP's dual-access data memory. Using these variables, semaphores can be
set up to allow the GP to signal the host that it has finished processing a
frame, for the host to signal that another frame is ready, and so forth.

Alternatively, the GP can generate interrupts which are detected by the host
interface, causing the DRI 1W to generate an interrupt on the host.

3.6 Video Controller support

The Video Controller supports both 8-bit and 24-bit modes of operation. In
the 24-bit mode, the least significant 3 bytes of pixel memory (pixel
memory addresses 0 through 23) are used to address the red, green, and
blue color lookup tables; these lookup tables typically contain gamma
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corrections. The low-level programmer structures algorithms so that the
desired red intensity for a pixel is placed in pixel-memory addresses 0
through 7, green at addresses 8 -15, and blue at addrt,3ses 16-23.

The 8 bit mode is used in more complicated applications when
pixel-memory is too scarce to permit the "full color" 24-bit mode. In 8-bit
mode, the red, green, and blue color lookup tables are all addressed by the
least significant 8 bits of pixel memory (pixel memory addresses 0 through
7).The tables are loaded so that the 2 MSB's select white, red, green, or
blue, and the 6 LSB's determine color intensity; no secondary or tertiary
colors (other than white) are provided. The 8-bit mode can also be used
with lookup tables that provide a monochromatic image, for image data
such as medical ultrasound and CT scans.

3.7 Programming examples

A C program running on the GP might contain the following lines. This
demonstrates rendering one triangle and updating the display buffer in a
double-buffered application. In this example, the Z-buffer is 24 bits long, at
pixel memory addresses 48-71, the image is computed using full 3-byte
color at pixel memory addresses 24-47, and scrcen is refreshed from
display buffers at pixel memory addresses 0-23.

FB_SETENABS 0;
FBA (..); FBB (..); FBC (..); FB_TREEgeZERO 0;
FB_- A (..); FBB (..); FBC (..); FB_TREEgeZERO 0;
FBA (..); FBB (..); FBC (..); FB_TREEgeZERO 0;
FBA (..); FBB (..); FBC (..); FBMEMleTREE (48,24);
FBA (..); FB.B (..); FBC (..); FB LOAD (48,24);
FBA (..); FBB (..); FBC (..); FB_LOAD (24, 8);
FBA (..); FBB (..); FBC (..); FBLOAD (32, 8);
FBA (..); FBB (..); FB_C (..); FB_LOAD (40, 8);

FB_SETENABS 0;
FBCPY (0,24,24);

The commands SETENABS and TREEgeZERO are used to scan-convert
the triangle. First, SETENABS sets the Enable register for all pixels. For
the first edge of the triangle, the GP computes the equation of a line in the
form Ax+By+C = 0, signed so that the tree result evaluates positive for
pixels on the inside side of the edge and negative for pixels on the outside
side of the edge. The GP sends this coefficient set to the Frame Buffer
using the FB.A, FBB, and FB_C macros, along with the TREEgeZERO
("tree greater than or equal to 0") instruction. This instruction causes the
Enable register to be cleared if and only if Ax+By+C is negative.
TREEgeZERO instructions are sent for the other two edges. Finally, only
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those pixel processors for pixels inside the convex region of the triangle are
left enabled (with l's in the Enable register). (For larger convex polygons,
additional TREEgeZERO commands are used for the additional edges).

To do Z-buffer hidden surface elimination, the GP computes the equation
for the plane of the polygon in the form Z = Ax+By+C. This coefficient set
is sent to the Frame Buffer with the MEMIeTREE ("memory less than or
equal to tree") instruction. This instruction compares the tree result to a
segment of pixel-memory (specified according to its LSB and bit-length by
the two instruction arguments), and clears the Enable register if the tree
result is not less than or equal to the contents of the memory segment. This
segment of pixel-memory, the Z-buffer, contains the Z-value of the
"nearest" polygon which has been processed so far at that pixel; thus, those
pixels which are hidden by previously drawn polygons are disabled.

The FB_LOAD instruction is then used to load the new values for the
Z-buffer into pixel memory, for those pixels which are still enabled after
scan conversion and hidden surface elimination. As with the MEMleTREE
command, the two arguments to FB_LOAD specify the location and size of
a segment of pixel memory used for the Z-bufltr.

Finally, coefficient sets are for the red, green, and blue intensity planes are
computed according to the Gouraud or other lighting model, and FBLOAD
is used to load the color intensity buffers in pixel memory.

After all triangles are rendered, the CPY command is used to transfer the
contents of the red, green, and blue intensity buffers (at pixel memory
address 24 through 47) to pixel memory addresses 0 through 23, which
produce the RGB output when the VC is in 24-bit mode. Arguments to the
CPY command are destination address, source address, and segment
length.

Note that the locations and lengths of these segments of pixel memory are
completely programmable, with the exception that the VC must be specially
microcoded if pixel memory addresses other than 0-7 or 0-23 are to be
displayed.

3.8 User and higher-level programming support

Higher-level programming. A fairly complete set of libraries has been
written for host and GP programs. These are useful for the programmer
who wishes to write a custom application, without being concerned with the
details of rendering in the Frame Buffer described above.

For example, a user who wishes to define a custom user interface may only
need to program the host. Library routines are used to set up display lists on
the GP. The application then reads the input devices and perhaps some
custom keyboard interface, and calls routines which cause frames to be
generated from the display list according to a set of frame parameters which
include viewing transformation matrices, lighting parameters, and the like.
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A somewhat lower-level programmer may write code for both the host and
the GP. However, rather than sending low level commands directly to the
Frame Buffer, this programmer might call library routines on the GP which
perform the beginning of frame setup in the Frame Buffer, then render
polygons, spheres, and other primitives, and findlly do the end of frame
operations such as copying the image into the low 8 or 24 bits of pixel
memory which refresh the display.

User support. We have developed standard programs for the user who
wishes to interact with his/her databases at the high performance levels
provided by Pixel-planes but who does not wish to do any programming.

For example, to use the program front, a user supplies a data base of
polygon or sphere primitives, as an ASCII file in a generic format. Front
downloads the data base to the GP via the DMA link, creating a display list
in the GP's data store. Next front loads a program into the GP which
interprets frame commands. Front then monitors the input devices interfaced
to the A/D converter, and issues commands to the GP for displaying
frames, using various viewing transformation matrices, lighting vectors,
fields-of-view, and so forth. The GP program interprets these frame
commands from the host, traversing the display list to generate an image in
the Frame Buffer using the basic Frame Buffer commands.

Front interprets the two deflection-encoded 3 degree-of-freedom joysticks to
define translations and rotations of the data base. The slider is used to define
field-of-view. A simple keyboard interface is used to toggle through other
joystick modes, for example, to vary light source orientation. If several
database files are specified, the user can translate and rotate one or more
relative to the others by selecting the appropriate object using the keyboard
interface. The keyboard interface also provides for changing background
colors, type of anti-aliasing, and so forth.

Other standard programs are being written by the software team. These
include walkthru, for walking through architectural models, and csg, for
editing and viewing constructive solid geometry objects.

4. Algorithms and Performance

In this section, we briefly describe the algorithms which have been
implemented on Pixel-planes 4 to date, along with some performance
figures.

It is our strong belief that many of these algorithms would not have been
implemented on Pixel-planes 4 were it not for the relative ease of
programmability of the machine. Programmability is facilitated because: (1)
the GP is a uni-processor which performs all the pre-processing
computations for Pixel-planes, rather than a pipelined or vectorized unit,
and (2) the GP is programmable in a high-level language. We believe that
the importance of ease of programmability in such experimental machines
cannot be overemphasized.
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Additionally, we believe that the importance of Pixel-planes transcends its
potential for accelerating graphics applications. It in fact represents a
radically new way of looking at graphics algorithms, and as such, we
believe it has the potential to change the structure of these algorithms and
suggest new methods for solving problems.

Fast Polygon Rendering. Pixel-planes was originally conceived as a
fast polygon renderer. It can render 35,000 triangles per second, with
Z-buffer hidden surface elimination and Gouraud shading. Rendering
speeds for polygons with more than 3 edges are somewhat slower; for
example, quadrilaterals are rendered about 20% slower.

Shadow Casting. Photograph 2 shows the results of a shadow-casting
algorithm developed for the machine by Jeff Hultquist [Fuchs et al., 1985].
Shadows are calculated as a post-processing pass following normal image
rendering. In this post-processing pass, the polygons in the scene are
processed sequentially, as in the rendering pass. For each polygon, the
planes defining the shadow frustum cast by that polygon are broadcast and
compared to the Z-buffer value computed during the rendering pass, to
define the pixels for which the scene intersects the shadow frustum. For
each pixel, a logical union is maintained which defines whether that pixel
was shadowed by at least one of the polygons. At the end of the
post-processing pass, the intensity of shadowed pixels is attenuated.

Since these shadows are computed using shadow volumes, rather than
being treated as separate objects, they can drape naturally over other
complex objects in the scene. Scenes with shadows require approximately
twice the rendering time of equivalent scenes without shadows. Pixel-planes
4 is the only graphics system, to our knowledge, that can cast true shadow
volumes at real-time rates.

Anti-aliasing. We have implemented an algorithm for reducing aliasing
effects in polygonal images; some resuits are shown in Photograph 3. The
left-hand image was generated without anti-aliasing -- note the "jaggies" on
diagonal edges of polygons. The right-hand image has aliasing effects
reduced by taking multiple samples per pixel ('super-sampling'), and then
averaging the samples with a filter. After rendering the non-antialiased
image, the system continues sampling until it has covered a 7x7-sample
filter kernel; however, this super-sampling is interrupted if the user moves
an input device. Thus the technique does not diminish the rapid interactive
system response; in other words, the anti-aliased version of an image is
generated only when the system has time. This is the 'adaptive refinement'
concept [Bergman et al., 1986]: the massive computational resources
needed for interactive computer graphics should be utilized to improve
image quality when the image is static.

Sphere rendering. Fred Brooks observed that siace the quadratic part of
the equation for a circle is constant for all circles, it can be pre-calculated
and stored at each pixel; circles are drawn by describing center and radius in
a linear expression -- they are effectively polygons with one edge. The
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algorithms for hidden-surface elimination and smooth-shading of polygons
can be extended to spheres in an analogous way, to generate smooth-shaded
inter-penetrating spheres [Fuchs et al., 1985]. The image in Photograph 4
shows the molecule Trimethoprime, an anti-cancer drug under development
at Wellcome Research Laboratory, and a complex enzyme it is intended to
interact with. This image contains about 1,300 spheres and can be updated
11 times per second.

Image enhancement. John Austin has implemented Stephen Pizer's
adaptive histogram equalization (AHE) [Pizer et al., 1984] algorithm on
Pixel-planes 4 (Austin and Pizer, 1987]. The left-hand image in Photograph
5 is the original CT scan of a human chest. The data contains a much larger
range of intensities than can be displayed or perceived. The right-hand
image is contrast-enhanced using ABE. Since this procedure requires a local
ranking of each pixel in a 512x512 image, it takes about 2 hours on a
VAX 11/785 (although an approximation to AHE, 'interpolated' AHE, runs
in a few minutes); Pixel-planes 4 executes the algorithm in about 4 seconds.

Constructive solid geometry. Steve Molnar, Greg Turk, and Clare
Durand are working on rendering constructive solid geometry (CSG)
objects on Pixel-planes 4, modeling them as complex polyhedra, that is, by
using planar approximations to convex CSG primitives. Although this does
not provide greatly increased rendering speeds over a polygonal boundary
representation of the same scene, the method does allow intersections and
logical subtractions of CSG primitives (like a hole drilled through a
cylinder) to be computed in real-time on the frame buffer. With a boundary
representation, offsetting of intersecting objects requires a lengthy
computation to compute the new set of polygons.

The algorithm is implemented by broadcasting the planar equations for each
front- and back-facing facet of the polyhedron and maintaining 2 separate
z-buffers, a minimum buffer and a maximum buffer, these buffers describe
the range of z-values which lie inside the primitive at each pixel address
[Jansen, 1986]. An example from this work is shown in Photograph 6.
Also shown is an image from the host display running a CSG editor, which
with which a user can interactively create a CSG object, viewing the
rendered object on Pixel-planes and the CSG expression tree on the host
monitor.

Mandeibrot and Julia sets. Photograph 7 shows results of an algorithm
implemented by Greg Turk for displaying Mandelbrot and Julia sets. It
allows the user to explore the 2-D plane of the set interactively; the inlage is
upoated at frame rates. Since all pixel processors are enabled virtually all of
the time, this algorithm gives far better utilization of the raw computational
power of the Pixel-planes system than we have achieved with any other
algorithm; to update these images on the 512 x 512 display at 25 Hz, the
enhanced memories perform 1300 million 15-bit adds plus 655 million
15-bit multiplies per second.
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5. The Next Generation Architecture

We plan to define and implement a new generation of the Pixel-planes
architecture- We are currently finalizing the architectural specification for
this new system, Pixel-planes 5, and are beginning design of the system.

We expect Pixel-planes 5 to be a dramatically more powerful machine than
Pixel-planes 4, for two reasons: first, speed on the algorithms performed by
the current machine will be considerably greater, due to the higher clock
rates and addition of per-object parallelism; second, the architecture is far
less restricted than Pixel-planes 4, with backing store and random access to
pixels, which should allow whole new classes of algorithms to be
implemented. In addition to its enhanced performance, Pixel-planes 5 will
be configurable in a variety of ways that allow cost to be traded for
performance. The machine will also be physically much smaller than
Pixel-planes 4 and will consume far less electrical power.

5.1 Performance Increases for Current Algorithms

Performance on currently implemented algorithms will be increased by
using higher clock speeds in the processor enhanced memories and by
providing a per-object parallelism in addition to the per-pixel parallelism
which forms the basis of the Pixel-planes approach. Additionally, the
pre-processing Graphics Processor must have greatly increased capability to
support this higher performance.

Higher clock speeds. We plan to run the enhanced memory chips of
Pixel-planes 5 at 40 MHz, for a direct 4-fold speed up over Pixel-planes 4,
which runs at 10 MHz. This should not be difficult on the enhanced
memory chips because of the much smaller silicon geometries. Upgrading
the Image Generation Controller (the sequencer which controls the enhanced
memory chips) to these higher clock speeds will, however, be a significant
challenge.

Per-object parallelism. When rendering polygons, the first thing that
Pixel-Planes 4 does is to disable all pixels on the outside of the first edge of
the polygon. Subsequently, all pixels outside the polygon are disabled, and
not until the beginning of the next polygon are any of these pixels'
processors performing any useful computation. Since complex databases
generally contain mostly very small polygons, the processors of the
enhanced memories have a very low utilization. To remedy this, we plan to
provide means for processing multiple polygons, .ying in disjoirt parts of
the display screen, simultaneously. This can be thought of as a per-object
parallelism superimposed on the per-pixel parallelism of Pixel-Planes 4.

To implement this per-object parallelism, the frame buffer will contain a
number of Image Generation Controllers. These IGC's control pixel
processors representing disjoint regions of the display screen. Each IGC
has a FIFO input buffer. The pre-processor (which computes the A,B,C
coefficient sets and frame buffer instructions) broadcasts each primitive only
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to those IGC's whose portion of the display is covered by that primitive.
Since polygons will be quite small, the majority of polygons will be
processed by only one IGC. Thus if the IGC's FIFO's are deep enough and
if the order of the broadcast primitives is reasonably uncorrelated with their
screen position, the multiple IGC's should be able to process several
different primitives simultaneously. Simulations with reasonable
assumptions about primitive randomization and FIFO depth and typical
databases show speed-ups of 4X or better for systems using 16 IGC's.

Pre-processing power. These increases in performance rely upon the
availability of a graphics processor capable of computing the required
number of coefficient sets for up to perhaps one million polygons per
second. Since no single processor can provide this amount of floating-point
computational power, some form of parallelism is required. The graphic
processor will be implemented using many, perhaps 8 or 16, Weitek XL
chip sets of the type used in the Pixel-planes 4 GP, operating in parallel.

5.2 Architectural Enhancements

We plan to enhance the architecture of Pixel-planes 5 in several ways,
making it possible to do new classes of algorithms. First, we plan to tightly
couple the enhanced memories to a conventional memory backing store.
Second, we plan to provide a separate conventional frame buffer from
which the display screen is refreshed and to which images can be block
transferred from the backing store at very high rates. Third, we plan to
upgrade the pixel processors of the enhanced memory chips to evaluate
quadratic expressions in parallel for all pixels and to have more bits of local
pixel memory.

Backing store. Pixel-planes 4's memory organization presents three
primary limitations: First, the Frame Buffer's contents are directly scanned
out to refresh a screen, but there is no means of reading pixel data back to
the host or GP. Second, the only method for addressing an individual pixel
(the standard operation of a conventional frame buffer) is to scan convert a
lxl pixel rectangle, and this can be done no faster than about 3ptsec/pixel.
Third, there is no communication between pixels, so one pixel cannot
directly make use of data stored in a neighbor.

We plan to address these three problems in a unified way, by tightly
coupling the processor-enhanced memory chips to dense commercial
memories, the backing store. We plan to make use of the fast serial port on
commercial Video RAM's to support rapid backing store operations to and
from our enhanced memory chips, which will have a special I/O port
designed to support a serial protocol that complements that of the Video
RAM. The primary difficulty in building such a scheme is the
unconventional arrangement of our enhanced memories. In frame buffers
built from commercial RAMs, the bits of a pixel are spread across multiple
memory chips (to increase bandwidth), whereas on our enhanced memory
chips, all the bits of a pixel are together on one chip. We plan a simple
custom chip to interpret between the different arrangements of the two
memories.
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The random I/O port of the video-RAM's will be mapped onto the
Pixel-planes 5's main data bus, so that pixels can be accessed in the
conventional random fashion. Various backing store operations will be
supported: pixel data from the enhanced memories can be moved to other
parts of the system (to the Graphics Processor, for example) and used in
other calculations; data can be written into the backing store in normal
random fashion and then transferred into the enhanced memories, perhaps
to be processed in vector form; pixel data from the enhanced memories can
be shuffled using the random port to simulate inter-pixel communication.

Separate frame buffer. The current Pixel-Planes 4 system implements a
512 x 512 array of physical pixel processors, which directly refresh the
display screen, with a one-to-one correspondence between pixel processors
and displayed pixels. In Pixel-planes 5, rather than directly refreshing the
display from the enhanced memories, we plan to refresh the screen from a
frame buffer built from Video RAMs in the standard fashion. Pixel data will
be moved in blocks from the enhanced memories to the frame buffer on the
system's high-speed bus. This will support higher display resolutions,
(1K x 1K and higher) without the necessity of providing greater amounts of
the very expensive enhanced memory. Alternatively, lower performance
systems can be built with fewer than 512x512 pixel processors.

Improved pixel processors. We plan to enhance the power of each
pixel processor in two significant ways: First, the number of bits of local
pixel memory at each pixel will be increased to 256 bits, versus the 72 bits
per pixel of Pixel-planes 4. Second, the bilinear multiplier tree of
Pixel-planes 4 will be replaced by a quadratic unpit that evaluates the general
2nd-order polynomial in 2 variables (Dx +Exy+Fy +Ax+By+C)
simultaneously for every pixel. This will permit much faster sphere
rendering, rendering generalized conic sections, and 'fast' Phong-shading
[Bishop, 1986]. This new quadratic tree requires approximately double the
silicon area required for the simple bilinear tree of Pixel-planes 4. This,
combined with the larger amount of local pixel memory, means that the
Pixel-planes 5 enhanced memory chip will retain the 30/70
processor/memory area ratio of Pixel-planes 4.

5.3 Physical Size and Cost Issues

Pixel-planes 4 is physically a very large system, consisting of thirty-two
15" x 15" cards containing 2048 custom VLSI chips for the Frame Buffer,
eight 12" x 12" cards for the Image Generation and Video controllers and
the GP, and ten 750 watt power supplies. We intend for Pixel-planes 5 to
be a considerably smaller, less costly, and less power hungry machine. It
will reside in one 19" wide rack and will use no more than 2000 watts of
electrical power. These goals will be achieved in several ways.

First, the Pixel-planes approach has the fortunate property that its systems
directly benefit, without modification, from advances in semiconductor
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technology. Recent announcements of 256KBit static memories suggest
that enhanced memory chips of at least 64 KBits can readily be built on
commercial fabrication lines. We plan to use a 1.2 micron CMOS process,
with double metal and polycide, to increase the number of pixel processors
on a chip, thereby reducing the number of chips in the enhanced memory
array.

Equally important for reducing system size and cost is the use of more
aggressive packaging technologies than the dual in-line and pin-grid array
packages and through-hole circuit boards used in Pixel-planes 4. The new
system will use leadless packages, surface mounted on multi-layered printed
circuits, not only to reduce system size but also to help support higher clock
speeds.

Finally, we plan to make liberal use of application-specific integrated
circuits (ASIC's) in the system to reduce the number of TTL 'glue' chips.

Pixel-planes 5 will be a more modular system than was its predecessor. The
pre-processor and enhanced memory array will each be implemented on
multiple identical boards; the boards of the system will be connected by a
very high bandwidth bus structure. The components can be assembled in a
variety of ways to build, for example, small, inexpensive systems with
modest performance or large systems with very high performance. The goal
is to provide a range of cost/performance with a small set of basic
components.
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Photograph 1: Pixe1-pilanes graphics system. Cabinet containing custom
hardware on the left: small upper rack contains Graphics Processor, Image
Generation Controller, and Video Controller, large lower rack contains 2048
logic-enhanced memory chips. Host and Pixel-planes monitor are on the
right with PI Henry Fuchs manipulating joysticks.

Photograph 2: Polygonal image with true shadow volumes. Updated at
framie rates. Database courtesy of Lee Westover.
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Photograph 3: Polygonal image before (left) and after (right)
anti-aliasing. Non-antialiased image updated at 8 frames per second;
anti-aliased image generated in about 6 seconds after user releases input
devices. Speed penalty is equal to the number of sub-samples taken. A
non-antialiased image is produced as the image moves, but when the image
becomes static the super-sampling algorithm is applied in successive
refinements (with an increasing number of sub-pixel samples).
Database courtesy of Don Eyles.
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Photograph 4: Molecular modeling using fast sphere algorithm. Large
molecule is the protein Dihydro Folate Reductase, smaller molecule (all
white) is a drug Trimethoprime under study at Wellcome Research
Laboratories. Image contains about 1300 spheres and is updated at 11
frames per second. Database courtesy of Helga Thorvaldsdortir and
Burroughs-Wel

Photograph 5: Original CT image (top) and AHE processed image
(bottom). Processed image generated in 4 seconds. Data courtesy of UNC
Memorial Hospital Nuclear Medicine.
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Photograph 6: Constructive solid geometry (CSG) objects are rendered
by modeling them as complex polyhedra, that is, by using planar
approximations to convex CSG primitives. Connecting rod generated from
19 primitives at 7 updates per second (left); database courtesy of U.S.
Army BRL. Window showing interactive CSG editor on MicroVax II
graphics terminal (right).

24



Photograph 7: Fractal images. Mandelbrot set shown in inset window.
Main image shows Julia set derived from point in Mandelbrot set defined by
crosshairs in inset. These images are updated at frame rates.
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